
Bitbanging is so
2017

Fast peripheral control from Raspberry Pi
and friends

Matt Evans — Hackaday Belgrade 2018

If you can read this, the projector setup is borked ;)

LED panels are
amazeballs fun

Many SMD RGB LEDs + constant-current
driver

Available in many sizes, e.g. 32x16, 32x32,
64x32, 64x64, and pixel pitch

It all started with … Shenzhen

LED panels are cool — I find them abnormally fascinating :D RGB

Lots of LEDs on a PCB, in modules with easy mounting/wiring

Your driver circuit needs to scan video through these manually

Manual BCM/PWM!

High FPS crucial

I got two 64x32, stuck together to make 64x64 — 4K display!

My first test, purely bitbanged (haha) in software using an mbed — EXAMPLE

Bitbanging is a fine way to try POC, test out an algorithm, etc.

First proper go — driven from STM32

Big shift register

Clock data in for a whole row, then latch — example later

Full-colour RGB — you have to do the PWM/brightness control by hand

Daisychain serial data out of one, into next

Got the panels running from my STM32, playing back animations

Demo effects plasma, blobs, fractals

Also MAME captures & GIFs.

Timing is key — flicker very noticeable! Will write about using DMA controller. Very predictable timing.

Pleased with this ~170Hz 33BPP / 11BPC.

WAIT — but WHY? For lulz

BUT… wanted network, stream video from phone. WHY? Haha for lulz

LED panels from a
Raspberry Pi

• Great library for driving LED panels from Raspberry Pi:

• https://github.com/hzeller/rpi-rgb-led-matrix

• But, doesn’t use DMA — it bitbangs, software loop

• "The system needs constant CPU … roughly 30-40% of
one core."

• To avoid flicker: “If you have a loaded system … you can
reserve one core just for the refresh of the display” 😫

!8

Okay, so I wanted networking — RPI zzz but Linux is just too convenient to ignore. But Pi Zero — €5-10!

Existing libs. Adafruit.

Crux of my argument: Bitbanging — great for simple tasks. Rubbish for realtime.

Dedicate a 64-bit Cortex A53? Eww. PiZero only has one core. PROBLEM

https://github.com/hzeller/rpi-rgb-led-matrix

HUB75 panel interface
(it’s all a big shift register)

Pins:

CLK

R0,G0,B0

R1,G1,B1

LATCH

A,B,C,D

OE

(Usually 5V!)

LATCH

CLK

RGB
data

ABCD
(Selects 1 of
16 LED rows)

…

…
…
…

!9

What do I need? HUB75 is a common interface. 5V. Some variation:

R,G,B data bit + clock into 3 shift regs, for R/G/B along a row

+Latch = energise data onto a row

row selected by 4 bits A,B,C,D

Data needs to go in about 25-30MHz

As fast as possible — higher refresh rate, higher colour depth

Display Parallel Interface
(DPI)

• Once upon a time, I was attaching
an LCD to a RPi using DPI

• Parallel interface designed to drive
TFT LCDs from BCM2835 —
alternative to HDMI

• 24-bit pixel output (+ pixel clock, +
sync bits) high-speed digital
output, 3.3V CMOS

Image from pinouts.xyz!10

Interlude: I was using DPI for another project (to drive an LCD as intended)

Very high speed pixel output — up to >100MHz

Digital: takes a pixel, sends it out

http://pinouts.xyz

I haz an idea!

Put pixel patterns in the video framebuffer that send digital
data patterns to DPI output pins!

No CPU overhead to display it

Guaranteed not to hiccup

!11

Patterns generate signals — signals like HUB75!

Parallel video out

100 101 110 BGR111 000 001 010 011

R

Digital out G

B

0

0

0

0

0

1

1

0

1

0

1

1

1

1

1

1

0

0

0

1

0

1

1

0

One line of
framebuffer

3 bits/pixel

!12

Taking an example, say we have 3 bits/pixel R,G,B framebuffer

Colour bits output with regular timing

Pixel bits — as clock, or data, anything

HSYNC at end of line can latch a block — a bit like the row latch in HUB75

Misusing video outputs
• You may have seen people using VGA for analog out:

• Tempest for Eliza: AM radio transmitter

• Fabrice Bellard’s DVB-T transmitter

• osmo-fl2k: Using FL2000 USB dongle as SDR transmitter

• Haven’t found any projects using digital video out for other
things

!13

LA experiments.

DPI pretty flexible - program resolution, sync width etc., variable bit depth

Just dump stuff into /dev/fb0 framebuffer device

Test program to try different FB resolutions/POC

Wiring HUB75 to DPI

!15

Budget runs out for fancy diagrams. Prototype:

- 4 bits -> ABCD row select 1/16, 6 bits for RGB0/RGB1, 1 bit for CLK

- 1 bit for OE — modulates brightness of current row

- HSYNC -> LATCH

Termination very important — wires long, fast signals
So I solder that up.

Little bit of protoboard — 74’245 to drive 5V

Extremely cheap! Interface costs less than 1 beer

Can see the acrylic case I started to build for it…

Glueing acrylic and trying to get it NEAT, OMG painful

ANNND… OK, more debug needed. But concept good:

Clocks one row worth of data every video line; HSYNC at end of line then latches that to drive LEDs.

For a given row, spends 68 lines driving different intensity levels of same pixels — BCM

Then, select new row — same again

Then, after 16 rows, frame done.

What the Pi’s framebuffer actually looks like (e.g. if you connected HDMI)

First four of 16 rows

128 clocks horizontally, for each driving RGB*2 into LED rows

Look at the gap — this is the timing for the intensity levels — higher bits in colour/intensity are left on for a longer time

BLUE background - dark to light (ABCD row sel)

Works really well — guaranteed no flickering

Simple Linux library that takes 64x64 32BPP RGB and does massive bit-shifting, writing to /dev/fb0 to send data out line by line.

App simply sees a flat RGB frame-buffer

Plasma, fractal animations

The realtime Julia set fractal was pretty smooth on the STM32, but super smooth on 1GHz CPU

I haven’t hacked DOOM to use it yet :)

177Hz, 11BPC/33BPP — entirely flicker free no matter how heavily loaded network/CPU is!

0% CPU overhead

I got my video streaming wish…

…wrote a little app for my phone to send image snapshots or stream video

Pointless fun thing for the wall

Also resolution so low that software MPEG2 player is only a few % CPU ;-)

Recursive…

On the software side, I mentioned 0% CPU to hold the image flicker free

To change the image there’s the massive bit-shifting exercise - low but not free, 1.5ms: at 60changes/sec it’s 9% CPU

-> Not optimised — expect can improve

So, it’s perfect! 🕺🍰

Not quite — some quirks

• 24 bit DPI uses all GPIOs

• DeviceTree configures per-pin multiplexing — you don’t
have to use them all

• I used a 16BPP screen mode — I only needed a few bits
output

• But where’s my LSB of Blue?

!26

Use custom DT to use UART — max 22 bits

In 16BPP noticed odd/intermittent disappearance of b0 in SOME situations

Can re-create by drawing a gradient ramp in blue (R=G=0)

Lost blue bit

LA plot showing intensity ramp in blue

Binary counting up 5 bits of blue

See the gaps?

B=0b00000 and 0b00001 are both output as zero

• My theory: display controller doing post-framebuffer
dithering/colour correction in 16BPP modes

• This does not occur in 32BPP modes — I recommend just
using 32BPP!

Lost blue bit

!28

Just use 32BPP mode.

OK anything else?

Another quirk: These lines aren’t supposed to have that shadowing of other stuff lower down the image

These lines correspond to row 1 out of 16 for each segment of the panel (4)

Signals not (all) held across Hsync
(but some are…)

LA plot: You can see the ABCD/row lines all going to 0 across HSYNC (LOAD). (ALSO B0 loss)

That means that first row is getting selected across HSYNC — displaying whatever was latched

Remember OE? Improved this by de-asserting OE before HSYNC

Wait time isn’t long enough — more padding bad

v2 circuit

!32

Decided to take a different approach

Added flip-flips — latch output pixel

Hold it across HSYNC (so current row held) — predictable

Buffer to 5V. Still cheap interface — <1 beer

WORKS GREAT! No shadowing.

Enabling DPI

• OK Matt, DPI sounds amazing, how do I use it?

• https://www.raspberrypi.org/documentation/hardware/
raspberrypi/dpi/README.md

• Enabled through /boot/config.txt

• Then, just write the display framebuffer as usual

!34

Using SDL or similar makes it easier to gain control of the framebuffer

- Disables the cursor and debug messages trampling on your image

https://www.raspberrypi.org/documentation/hardware/raspberrypi/dpi/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/dpi/README.md

dtoverlay=dpi18

enable_dpi_lcd=1

display_default_lcd=1

framebuffer_depth=16

HS/VS phase (0) polarity (0) control (7), nCLK/DE (2),

RGB order(1), 565 mode 3 (3):

dpi_output_format=0x007213

Custom timings

dpi_group=2

dpi_mode=87

hdmi_timings=<h_active_pixels> <h_sync_polarity> <h_front_porch>

<h_sync_pulse> <h_back_porch>

<v_active_lines> <v_sync_polarity> <v_front_porch> <v_sync_pulse>

<v_back_porch> <v_sync_offset_a> <v_sync_offset_b>

<pixel_rep> <frame_rate> <interlaced> <pixel_freq> <aspect_ratio>

hdmi_timings=272 0 0 8 0 1103 0 1 1 100 0 0 0 170 0 60000000 1

!35

Example working config

If the Pi doesn’t like your configuration, it will silently:

— choose one it prefers

— fail to boot

— boot but keep DPI disabled

BCM2835 DPI capabilities

Pixel clock min 32MHz, 105MHz tested OK

Maximum ~150MHz?

X pixels min 8

max 1920

Y pixels min 8

max 1280

Sync widths min 1 pixel for HS

min 1 line for VS

Misc Didn’t check max sync widths or lowest frame
rate (theoretically 14Hz)

!36

Remember don’t NEED PCLK — can clock external stuff from a pixel colour bit

My scope isn’t high enough BW to see how good o/p @140MHz is, but it enabled

FB dimensions; max/min/alignment — fit your data around this

SYNC— :(Can’t get completely unbroken stream of data out

Many other computers support
similar LCD video output

• Common for SBCs to have parallel output from LCD controller!

• Beagleboard, various cheap Allwinner/sunxi boards

• I like this technique because:

• Often faster than GPIO

• Realtime, zero CPU overhead

• Much easier to get started/debug than using DMA controllers

• Can do this from userspace, or even python

• Not as nice as a Beaglebone PRU ;-) (But $$$/complicated!)

!37

I used a Pi here but this technique applies to many other machines.

Aside from VGA and LCDs
and LEDs, what is it good for?
• Supply data to FPGA/CPLD — pattern/signal generator?

• Motors — 24 servos!

• Steppers?

• Drive 20 SPI LCDs at once

• Or 24 strings of WS2812s — 24x1024 at >30fps!

• Only 1.2kW & about €2000 🧐

!38

Wanted to do sig gen — but hard w/o unbroken stream of data (VS/HS gaps) — FPGA retime

Stepper motors might work if they can deal with the VS/HS gaps?

Have been playing with some very cheap 2” TFT modules (0.5 beer) — SPI stream, could drive 20 of these in parallel from one Pi. 20 tiny displays, cool!

… all from userspace, all 0% CPU overhead

Goodbye

• Some ideas for cool things to do with LEDs?

• Try using DPI/TFT controllers for unusual purposes?

• Look at peripherals on your boards — any opportunity for
creative misuse?

Thank you!

OK, tour has come to an end. Cheers, seeya. :D

More hax!

http://axio.ms

https://github.com/evansm7

http://axio.ms
https://github.com/evansm7

